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ABSTRACT

The wind fields of the stmospheric circulation at times present
formidable hazards to the launching of a space vehicle. Acceptable
predictions of the maximum wind in the maximum dynamic pressure region
for space vehicles over Cape Kennedy, Florida (10-15 km) are sought
for 12-hour increments through the use of transition matrices of
operating Markov chains. The concepts of information theory, entropy,
and Markovity are presented.

Empirical transition matrices are examined for stationarity and
order of Markovity. The Markov models are compared to those of per-
sistence and climatology. For winter and summer seasons predictions
are made from each model and then verified. The test data are randomly
selected from a period different from that used to construct the models.

Problems encountered during the study and recommendations for

future investigation are discussed.



I. INTRODUCTION

The wind fields of the atmospheric circulation at times present
formidable hazards to the launching of a space vehicle. Though in a
macroscopic sense the atmospheric flow through which a vehicle passes
may be relatively smooth, the shear from one level to another may be
such as to adversely affect the vehicle's operation. Turbulence also
may be detrimental to the passage of the vehicle.

The wind fields nearly always are in an intensifying or dissipating
stage. These are seldom in a steady state stage. The definition of
steady state may be given in terms of the atmosphere itself but would
be better cast in terms of the vehicle's interaction with the atmosphere.
This, sometimes, is difficult to determine. Therefore, this study is
restricted to the prediction of only one feature of the wind.field,
namely, the maximum wind in the space vehicular dynamic pressure region,
which is considered here to be 10 through 15 km. This paper has been
presented in part as an invited paper at the Conference on High Altitude
Meteorology and Space Weather at Hduston, Texas, on March 29-31, 1967.

The National Aeronautics and Space Administration, Marshall Space
Flight Center, R-AERO-YT, Huntsville, Alabama, (NASA-MSFC-R-AERO-YT) in
cooperation with the Environmental Science Services Administration,
Environmental Data Service, National Weather Records Center, Asheville,
North Carolina (ESSA-EDS-NWRC) is developing prediction procedures for
features of the wind distributions at Cape Kennedy, Florida.

Previous unpublished reports treat:

A. The static prediction of the maximum wind from the

surface through 27 km, [16]




B. The prediction of the wind profile from the surface
through 27 km by means of multiple regression techniques
[14], and

C. The prediction of the wind profile from the surface
through 27 km by use of Markov transition processes [15].

The input usually has been wind data from either Cape Kennedy,
Florida or from the North American continent wind fields, but in one
instance 500-mb heights and tropopause heights were examined as
predictors. Use of other parameters is reserved for future investi-
gation.

The first case above was restricted to the determination of daily
means and variances from 6 years of data, or essentially a sample of
six. These means and variances then were fitted by Fourier series
(harmonic analysis). The insignificant harmonics were eliminated.
Predictions for any date were made on the basis of the mean and
variance for that date--computed from the harmonics. Tests for nor-
mality were made. Then the distributions were assumed to be distri-
buted normaelly and independently for each date. The prediction is the
mean plus or minus certain increments of the standard deviation in
order to provide selected percentages (or quantiles) of the distribu-
tion. For decision purposes, then, a Monte Carlo process can be used
to provide the predicted value.

Figures 1 and 2 show for Cape Kennedy, Florida, the harmonic
analyses of the means and variances through the year for the 0000Z and
the 1200Z observations. The shape of the corresponding harmonics '
implies that there is no difference between the 0000Z and the 1200Z

sets of data. Figure 3 shows the summation of the significant harmonics
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Fig. 1.

HARMONIC ANALYSIS OF DAILY PROFILE MAXIMUM WIND SPEEDS, SURFACE TO 27 KILOMETERS

CAPE KENNEDY, FLORIDA, 1956—1961
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| Fig. 2.

HARMONIC ANALYSIS OF DAILY MAXIMUM PROFILE WIND SPEED VARIANCES, SURFACE TO 27 KILOMETERS,
CAPE KENNEDY, FLORIDA, 1956 —1961
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for the mean values and the variances. The central heavy line shows
the seasonal march of the mean values. The deciles shown are derived
from the respective variances. For each date there is an expected
value, the mean, and for that same date the corresponding expected
deciles have been computed and placed. Figures 4 and 5 have actual
observed date for the respective years of 1962 and 1963 superposed on
Figure 3. Examination of these figures shows that there appears to
be a small periodicity in the wind. This feature will be discussed
later.

In the second and third cases probabilistic envelopes of profiles
from the surface to 100,000 feet were made. Individual profiles were
described in terms of orthogonal polynomials. The orthogonal poly-
nomial coefficients were obtained for each profile in a set of profiles.
Multiple linear regression screening techniques were used with these
coefficients to obtain predictive equations for coefficients of future
profiles. These predicted orthogonel polynomial coefficients were used
to construct or to synthesize profiles or envelopes of profiles.

The present study is restricted to the prediction of maximum
winds in the maximum dynamic pressure region. This is the 10-15 km
layer above the launching pads of the space vehicles, The process
explored here is the Markov process.

Although prediction accuracy sought will be the best, the
requirements ought to be made in terms of the potential available
in the dasta. At first glance a requirement of a standard error
of 1.5 mps or a range of plus or minus 5 mps does not seem too
stringent. However, examination of the literature and unpublished

works indicates that observational standard errors of 4 to 7 mps
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are likely. Rapp [49] shows an observational standard error of
about 2 mps when different telemetering systems are used from the
same balloon train. Gabriel and Bellucci [23] show & standard error
of about 3 mps in the layers above 300 mb.. At altitudes of 7 to 15
km Anderson [2] indicates that for GMD-1lA [54]) equipment instrumentel
error is about 2.5 mps. A U. S. Navy report [53]) implies that between
16 and 30 km a standard error of asbout 7 mps exists in the wind
measurements. Plagge and Smith [47] indicate a standard error of
about 5 mps at altitudes at or above 7 km.

Crutcher [11] shows that predictions of 300 mb winds at Omsha.,,
Nebraska, and other points have a standerd error of about 7 mps.
Reed [50] shows forecast standard errors of 15 to 20 mps at higher
altitudes. The U. S. Weather Bureau [55] at 8 locations over the
U. S. at 7-8 km (25,000 feet) indicates predictive standard errors
which average 7 mps.

Until newer and better instrumentastion is available a standard
error of measurement of 2 mps seems to be the best obtainable. This
then provides an optimum minimum range of plus and minus 6 mps or a
total range of 12 mps, though it was hpped that the forecasting pro-
cedures could be developed in these preliminary studies to reduce the
standard error to at least 5 mps. This would be a reduction in vari-
ance of 10 to 1 (one order of magnitude) from that indicated by Reed
[op. cit.]. Prediction to within 10 mps of the observed would be
good. This would be a reduction in variance of an order of 2 to 1

(an order of magnitude of one-fifth).
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II. OBJECTIVE

Acceptable predictions of the maximum wind in the maximum
dynamic pressure region for space vehicles over Cape Kennedy are
to be sought for twelve-hour increments out to 120 hours through
the use of transition matrices of an operating Markov process or
Markov chain, M. P. or M. C., The predictions for this immediate
study will be made only from the Cape Kennedy upper wind data avail-
able from eight years of observations. They will be made within the
bounds of thé noise imposed by instrumentation, observer error, and
of the operating thermodynamic systems. A prediction standard error
of 5 mps at this stage would be considered a success with GMD-1A
[op. cit.] equipment.

It is a well-established fact that persistence is a dominant
feature of weather systems. For a predictive scheme to be good and
useful it must be significantly better than either persistence or
climatology. Therefore, the results of some of the comparisons be-
tween the forecast models will be included in this paper.

III. DATA SOURCE

All meteorological data of the Environmental Science Services
Administration (ESSA), Air Force and Navy are stored at the National
Weather Records Center in Asheville, North Carolina. In addition to
the winds aloft data available in punched card decks there are decks
-containing winds, temperature, moisture measurements and heights at
specified pressure levels. These data are referred to as thermodynamic
data. Reference manuals which describe these various sets of data are
available at ESSA-EDS-NWRC.

The development of prediction techniques requires sets of data

11



which are serially complete. The only deck or set of serially com-
plete wind data is Card Deck 600 produced by ESSA-EDS-NWRC for
NASA-MSFC-R-AERO-YT and NASA Langley for Cape Kennedy, Florids;
Washington, D. C.; Norfolk, Virginia and Santa Monica, California.
The periods vary from six years to ten.

The record for Cape Kennedy contains wind direction and speed in
mps at 1 km levels from the surface through 27 km for the period
1956~1963. This can be considered to be a short term record that
provides a sample of only eight. For a short period at the end of
the eight years four observations per day are available. However,
only two observations per day are used in this study. These are the
0000Z or 0300Z and the 1200Z or 1500Z observations.

IV. ENTROPY AND INFORMATION THEORY

Entropy and information theory play & vital role in the assess-
ment of the potential of the transition matrices in a Markov process.
It is pertinent to discuss these two concepts before discussion of
the Markov process, though the discussion is necessarily brief.

A. Entropy

Getman and Daniels [25] interpreted +the second law of thermo-
dynamics to mean that a state of equilibrium is approached by all
systems. In other words there is a tendency for all systems to
approach a state of maximum probability. Entropy is a measure of
the extent to which a system is random. It is a measure of disorder
in a system; it is a measure of energy. Entropy increases when a
system passes into a more random or less ordered state and conversely,
it decreases when the system passes into & less random or more ordered

state. This leads to the third law of thermodynamics, which says
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that the entropy of a crystal at absolute zero is zero. The discus-
sion above and that which now follows perhaps may be clearer when
some analogies are made.

There is a need to have some measure, intuitive or otherwise,
of the order and information in the meteorological systems under
study. Consider a channel which may be used to communicate information
from an input to an output signal. In general, some alphabet is
assumed as indicated by Feinstein [18]. For perfect information and
communication, a letter of the alphabet at the input would have a
one-to-one correspondence to the output letter. It would not be
necessary that there be a one-to-one correspondence between elements
of the sets. The alphabets are such that a &b or A ~B are sets and
an element "a" represents an element (letter) of set A {A} while "b"
represents the corresponding element (letter) of set B {B). An alpha-
betic letter at the output is associated with one and only one alpha-
betic letter at the input. If this occurs with each transmission,
there is perfect communication. As there 1is complete order--no
disorder--in this case, the entropy of the communication channel
would be considered to be zero.

If there is some noise or disorder in the channel, then the
entropy of the system would be something greater than zero. There
would be some state at which the disorder in the system would be a
maximum; the system would be completely random and usable (available)
information would be nil.

Shennon [51] wrote the first paper on communications utilizing

the concept of information theory. This paper is now a classic.
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Shannon also employed the concept of entropy, though he and others
after him call this "equivocation" rather than entropy.

A measure which satisfies the needs of this concept is given
below for a single element; Shannon [op. cit.], Feinstein [op. cit.],
Kullback [38], Masuyama [43], Baldwin [5].

c

H= ;El Py 1n p; Iv.A.l
where Py is the probability of the system being in some one state,
i, of a number of states. The negative sign assures the positiveness
of the quantity H, called equivocation or entropy. H will be called
entropy throughout the remainder of this paper. If p; is zero,
p; 1n Py is defined as zero. If there is only one state, the entropy
is zero; that is, the system is fixed and there is no chance to pass
outside the system. For example, if in the study of maximum winds -
in the maximum dynamic pressure region over Cape Kennedy, Florids,
during January, the class interval chosen is 0-200 mps, and the
maximum wind of all maxima recorded is 103 mps, then the likelihood

estimate of the entropy

§- » (£,/n) 1n (£,/n) IV.A.2
i=1

will be zero. Here, f, is the observed frequency in the state i
and n is the total number of observations. In this example

Zfi =n and ¢ = 1. The system is essentially in a fixed crystalline
state. There is no additional informstion to be obtained from any

observation either prior or post to the time of observation. Total -

information is available in the NOW condition. There is no need to
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observe, to study, and to predict. The answer is known that the winds
will be in the one state O to 200 mps. This then satisfies one
boundary condition.

If all probabilities are equal in each and every state of two or
more states, then we find the other bound, which is the maximum entropy,
the maximum disorder, or the lack of any applicable information to
permit forecasting into one of the categories. This maximum entropy
is equal to the logarithm of the number of states. Thus, in a two-
state matrix a measure of the maximum disorder or the maximum entropy
would be the logarithm of two. In order to compare the entropies
from one type of matrix to another, the entropies may be normalized
by dividing each entropy by its respective possible maximum entropy.
Thus, in a two-state matrix, the entropy would be divided by the
logarithm of 2 while the entropy of a three-state matrix would be
divided by the logarithm of 3.

The concept introduced by Shannon [op. cit.] and others seems to
be satisfied intuitively by the entropy concept defined above.

Masuyama [op. cit.] discusses the likelihood estimate of entropy,
its bias énd its variance. He shows that the entropy behaves as a
formal variance. This fact will be utilized later.

B. Information Theory

Karl Pearson [U6] devised the now well-known and femiliar X2
(Chi~squared) test to check the heterogeneity or goodness of fit of
quantified classified data with respect to some theory specifying
expected frequencies. Generally, the null hypothesis that there is

no difference is tested.
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Fisher [21], as a corollary development to the maximum like-
lihood criterion, proposed the log likelihood ratio criterion. Neyman
and Pearson [44] developed this still further and showed that -2 1ln A
was distributed as x2 with appropriate degrees of freedom where A is
the likelihood ratio criterion. Herdan [30] draws attention to the
close relationship of X and H, the entropy. Woolf [60], Kupperman
[42]), Kullback et al [4O] discuss this history in more detail.

Another statistic, "I, has been developed by Kullback and Liebler
[41], used as o1 by Kullback [op. cit.], discussed by Kuppermasn [op.
cit.], and further developed by Kullback et al [40]. Kullback et al.
[40] called the 2? g minimum discriminant information statistic
(m.d.i.s.). Baldwin [4,5] independently developed the same statistic
from a consideration of the channel capacitance in communication
theory. He labeled his statistic "u", called it a dependence capa-
citance statistic (d.c.s.), and used it as 2nu.

If p(x) is the multinomial distribution on a population of c
classes, and p'(x) is any other distribution on the population of
c classes such that every possible observation from p'(x) is also a
possible observation from p(x), then

"(x

— — 1
I=u=2 _ p'(x) In o IV.B.1

A

Kullback et al [40] develop & maximum likelihood estimate I in

terms of frequencies, and Baldwin [4,5] develops his estimate u in

terms of probabilities. When this latter quantity is multiplied by “

the n-count of the sample,
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T

n — IV.B.2
a'a” np_

where fa is the frequency of observations in the Efth cell, npa is
the theoretical or expected frequency of observations in the a-th
cell, and the summation is extended over all cells a = 1,2,... The
expected probabilities P, > 0, and their sum over all categories
Zapa = 1. For an fa = 0 the quantity O 1n O is defined as zero. The
% = nu is found to be essentially equivalent to the -1n A of Neyman

and Pearson [op. cit.].

By use of the approximation

f £f2 - (np)®
In =2 =~ (1/2) = £
np, f, (op, )

Kullback et al [40] show that for P, £,>0

£ (£, - np )?
A =or s In-2 ~y —2 8 IV.B.3
a a np a

n
a Pa

The last expression in IV.B.3 is the familiar x2 statistic. Thus,

2% and the equivalent statistics 2nu and -21nA are distributed asymp-
totically as xz with the appropriate number of degrees of freedom

as developed by Fisher [21].

A .
Ku [36] discusses the inflated values of 21 that occur with

the presence of zero cell frequencies. This inflation results from
the fact that for an f = 0, the m.d.i.s. (or d.c.s.) term on the
left side of the approximation in IV.B.3 is zero whereas the corres-
ponding x2 term on the right side is negative. It follows, therefore,

that 2% is. always greater than xz when zero cell frequencies occur in
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the sample. Ku [36] proposes an empirical correction factor of
subtracting one from the computed 2% (or Qnﬁ) for each zero cell
frequency in order to compensate for the inflated values. This
correction, however, is valid only if there are no more than a
few cells with zero frequencies [37].

The information statistics provide the measure of the transmission
capability of a communication channel. Perhaps the name selected by
Baldwin is a little more descriptive than that chosen by Kullback
et al [40]. The communication channel described by Feinstein [op.
cit.] has a certain capacitance or capability to transmit information.
The channel may have a certain noise level, yet the relationship
or history (or memory) which exists in the channel will control the
amount of usable information which is received as an output. The
word dependence capacity, therefore, implies the capacity and the
memory that is operating and which can be utilized. This dependence
capacity then is in part a measure of the Markovity of the system.
These entropy and information concepts are implicit throughout
all further discussions.

V. MARKOVITY AND PROBABILITY MATRICES

Transitional probabilities and Markov processes and chains are
discussed by Kolmogorov [33], Feller [19], Kullback [op. cit.], Chung
(10], Dynkin [17], Billingsley [7,8], Keeping [31], Wilks [58],
Kullback et al [40] and Bartlett [6]. Further bibliographic reference
may be made to Billingsley [7], who provides 113 references.

Application of such probabilities in the meteorological field
has been made by Andre [3], Gabriel and Neumsnn [24], Allen et al [1],

Caskey [9], Weiss [57], Feyerherm and Bark [20], Baldwin [4, 5],
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Wiser [59], Crutcher and Orovitz [op. ¢it.], Quinlan [48], Grin-
gorten [29], and Godske [26, 27, 28]. The above references are
only a small portion of those available in the literature.

A. Some Preliminary Arguments

The Markov phenomenon in g continuous distribution is called a
process. In a discrete distribution it is called a chain. Weather,
in general, is a continuous persistent distribution, but because
measurements and time intervals essentially make it discrete, it can
be thought of as a Markov chain (M.C.).

A Markov process or chain (M.P. or M.C.) has a memory, history
influence, or persistent feature of m time periods. In many instances
and in many texts the concept of the Markov process or chain involves
no more than one time interval of history or memory. However, here
the system used is that of the m-th order. The system is called
an m-th order M.P. or M.C. In a first order M.C. with a time period
of one day, today's weather affects or controls tomorrow's weather
but not day-after-tomorrow's weather. Similarly, a second order M.C.,
if the time interval is one hour, implies that the weather an hour
ago and the weather now both influence or control the weather an
hour from now. The time interval is arbitrary and could be a week,
month, year, or decade. The problem generally will suggest the
interval(s) to be used.

A process is stationary if its distribution does not change even
though the sampled data may differ from sample to sample. Koopman
[34, 35] defines an M.P. or M.C. as stationary when the conditional
probabilities (probability of.an event given a previous event) remain

fixed. He considers a series of successes or failures of an arbitrary
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event under conditions such that the probability of success does not
remain constant from trial to trial. Wadsworth et al [56] consider
the theory of probability distributions in related trials. Their
investigation is based on the works of Koopman [54, 35].

An M.P, or M.C. may be cyclic in that the process varies with
some regular periodicity or return feature. In the realm of weather,
processes through the year may be expected to show a periodic feature.
There could be other periodic or aperiodic forcing functions modulating
these which may be difficult to identify, much less to isolate and to
remove. Even in the periodic case the required mathematics and
arithmetic will be cumbersome. The principal periodicities considered
in the data used in this investigation are:

1. diurnal

2. short term (weekly, monthly, ...)
3. seasonal

k. annual

In a study of ocean surface weather data [12] it is found that
periodic functions are apparently existent in data collected over the
years and vwhich are treated as an annual ensemble. Following this,
Baldwin [4] determined that the processes in the annual data are
not stationary. Neither of these is unexpected. The usual method
of avoiding the cyclic effects is to treat the data in monthly or
shorter ensembles. This is followed even though partially truncated
distributions may have been obtained. The nﬁll hypothesis of
stationarity in the monthly data is not rejected and it is assumed

that the process is indeed stationary. By an analogy, processes
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through the day will be expected to be periodic but within an hourly
interval the process may be essentially stationary.

No mathematics will be used in this report to isolate and
remove periodic or aperiodic processes embedded in the data. The
isolation and extraction of the periodic or aperiodic functions from
the data is deferred to later research. It is assumed here that the
processes involved are reasonably stationary over a month.

Ergodicity in the Markov system implies that it is possible to
go from any state to any other state, yet that the process in time
will converge to some determinable state. Parzen [45] indicates
that if sample or time averages obtained from a record may be used
as an approximation to the corresponding population average, then
the process can be said to be ergodic. 1In general, weather processes
converge to climstology. Any disruption in the convergence process
in the weather will be damped in time and the process will continue
its convergence to climatology. The disruptive influence disappears
in time and subsides into the general trend of the total system.
Thus, the climatological vector of a Markov distribution may be con-
sidered to be the ergodic vector. Ergodicity implies stationarity
but the converse is not true.

B. Preparation of Probability Matrices

At this point a standard matrix format will help to visualize
the procedures of forming an array. Table V.l shows a matrix in
terms of frequencies while Table V.2 shows a matrix in terms of
empirical probabilities or relative frequencies. Table V.2 is the
same as Table V.1l except that each frequency fij has been divided

by n, the number of pairs of observations.
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TABLE V.1 SCHEMATIC RAW FREQUENCY MATRIX

Table V.1 Schematic set-up of a two way, row and column, r x c,
contingency table in terms of frequencies. An fi. is the frequency
of observation of the i-th row with the j-th column. fi. is the
frequency of the i1 conditions i.e., the summation of the i-th row
over all columns j. An f.j is the summation of frequencies of the
J-th column over rows i. The f.. then is the summation of frequencies

over all rows and columns and is equivelent to n, the total number of

paired observations.

First Second criterion of classification
criterion LATER (J)
of classi-
fication 1 2 3 ces J ce c Total
Now (i)
1 fll f12 f15 .eo flJ vee flc fl.
2 f21 f22 f25 ees f2j cee f20 fe‘
f f f .o T vee f T
3 51 sz t33 3 3c 5.
i fll f12 fi3 .o i3 eoe ic fl.
T frl fr2 fr3 e frj . frc fr.
Total f.l f.2 f.5 e f.j e f.c f.. =n
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TABLE V.2 SCHEMATIC RELATIVE FREQUENCY MATRIX

Table V.2 OSchematic set-up of a two way, row and column, r x c,
contingency table in terms of empirical probabilities or relative
frequencies where Pij = fij/f = fij/n’ n or f 1is the number of

paired observations, and fij is the frequency of observation of the

i-th row/j-th column combination.

First Second criterion of classification
criterion LATER (J3)
of classi-
fication 1 2 3 cee J cee c Total
NOW (i)
1 Pn Pip Pz -0 Py c+ Pie P.
2 Poy  Pop  Pp3 - Poy  cee Poe P,
5 P51 Psp Psz  ocr Pgy o ceo Py Ps,
+ Pi1 Pip  Py3 - Py o0 Pye Py
T Pri Pro pr5 o prJ * Pre Pr.
Total p‘l p.2 P 3 cee p.j cee P.c 1.00
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A schematic of a transitional probability matrix is shown in
Table V.3. A transitional probability is a probability for the
occurrence of a later event given that an initial condition has
occurred. The'matrix is prepared easily by dividing the fij by the
respective row frequencies fi. of Table V.1l. It should be noted
that the sum of the transitional probabilities over a row pi./i
must equal 1.00.

The matrix shown in Table V.3 is used as the basic scheme for
predicting categories of maximum winds. Only a category, and not a
specific wind speed, can be forecast. The requirement of establishing
suitable classes essentially makes the continuous wind distribution
discrete.

For ease of reference, following Baldwin [4], the transitional
probability matrices prepared for this study may be identified as
B[p]t where

1. B indicates the period covered, such as s for
12-hour, d for 24-hour, w for week, m for month,
a for annual.
2. [plis the transitional probability matrix.
3. t is the time interval of the matrix such as 12
for 12 hours, 24% for 24 hours, 36 for 36 hours, etc.
C. Tests of Transitional Probability Matrices

1. Stationarity test

If dl cee d.t ... is a stationary M.P. or M.C. with a transition
matrix [p] and an absolute, climatological, marginal, or ergodic

vector [n), then Baldwin [4] shows that

[n] [p] = [x] v.c.1

24




TABLE V.3 SCHEMATIC PREDICTION MATRIX

Table V.3 Schematic set-up of a two way, row and column, r x ¢,
contingency table in terms of empirical transitional probabilities
Pig/1 = fij/fi vhere fij is the frequency of observation of the
i-th row/j-th column combination, and fi is the summation of the

i-th row frequencies over all columns J.

First Second criterion of classification
criterion LATER (J)
of classi-
fication 1 2 3 cen J .o c Total
NOW (i)
1

P31 Py Paza 0 Py ot P Pl

2 Poyjp Pppfp Ppzfe tt Pojfo ctt Paefo Pp po
> P31/3 Psp/s Pazjz cct Psg/s ottt Paefs Ps /3
i Pia/i Pifi Pizfi vt Pig/i vt Pie/s Pija
¥ Prifr Profr Pr3fr 0 Pry/r o Pre/r  Pr./r
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Thus, the quantity [n] [p] - [x] can be used to test the stationarity
of a process. If the quantity for a given process is zero, or at
least not significantly different from zero, then the process can be
assumed to be stationary. Not enough experience has been gained to
establish a firm estimate as to how large a difference from zero can
be accepted before a decision is made that the operating system is
not stationary. Obviously, the number is a function of the number of
observations as well as of the number of categories.

2. Distribution tests

The information statistics can be used to test whether or not
a given distribution is statistically the same as a specified theo-
retical distribution. From IV.B.3 and the discussion following it,
the test, under the null hypothesis that the expected and observed

cell frequencies are the same, is

f
=2

npa

A -
2l =2nu=2X f 1n -b V.C.2
& "a

where fa is the observed frequency in the a-th cell, n is the number
of observations in the sample, p, is the theoretical probability of
the a-th cell, and b is the number of cells with zero frequencies.
The test statistic is asymptotically distributed as xz. Since the

total number of degrees of freedom of the system v, is a - 1, and

t

the number of restrictions placed upon the system is Vnp (the number
a

of degrees of freedom assoclated with npa), the appropriate number

of degrees of freedom v with which to enter the xz table is

V=vy, =V =g ~-1-v V.C.3
t npa npa
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The subtle point of rejection or of non-rejection of hypotheses
arises. The non-rejection of a hypothesis does not mean that the
hypothesis is accepted in totality or finality. A stronger or more
precise test may indicate that the hypothesis should be rejected.

The precision of the m.d.i.s. or d.c.s. test statistic appears to be
dependent upon the n-count of the sample. If a 2? based on é(f&> 0)=n
sample observations is y, then the 2? based on kn sample observations

is ky, where k is a constant multiplier of each frequency of the
original distribution. TFor a constant empirical probability dis-
tribution the 2? is thus a monotonic increasing function of the

sample size n. The degrees of freedom, however, are independent of n
and therefore do not change as 2? varies. Further research is needed
to develop a quantitative measure of the precision of the test.

One of the uses of the test statistic is that of comparing an
observed frequency distribution to an equiprobable distribution. That
is, it is compared with the maximum entropy possible in the system.
Under the null hypothesis the probability of being in any cell is
the same as that of being in any other cell. Setting Py equal to a
constant l/g, where g is the number of cells e =1, 2, ..., g, the

proper test statistic is
A gf
- a
2ZI=2nu=2.f ln— -b, v=g-1 V.C.h
8 8 n
which breaks down into the components
A -
21 = 2nu = 2§ fa 1n fa +2nIlng-2n1lnn - b V.C.5

These equations can be computed best by the use of electronic computers.

However, table look-up permits advantageous use of desk calculstors.
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Kullback [op. cit.] and Masuyama [op. cit.] provide tables of in n,

n 1n n, ahd n(ln n)z, up to n=lOOO. Woolf [op. cit.] provides tables of
2n 1n n up to =009 while Kullback et al [39]provide tables of 2n 1ln n
up to n=10,000.

A two-dimensional distribution can be expressed by a matrix of rows
i=1,2, ..., r end columns j = 1,2, ..., c where the rows represent the
first dimension or criterion of classification, and the columns represent
the second criterion. If the two criteria are independent, then P, =
P.. = pipj. Under the null hypothesis of independence between rows and

iJ

columns,
r c

f
A = -= —ii —
21 = 2nu = 25, §=1 fij 1nnpip‘j -b, v=(r - 1)(c - 1) V.C.6

The pi and pj can be estimated by the relative frequencies of the data

sample f, /n and f J./n, respectively. The notation used is that of

Table V.1, V.2 and V.3. The statistic then becomes

_ r c nfij
21 = 2nu = 2§—l §=l fij 1n §;—? ; -b V.C,7

In a three-way clessification, or cubical matrix with r rows, c
columns, and d depths, the d.c.s. for testing independence among the

three criteria is

T c d n2fiJk
31 3 ke Tige P T, f .1

A -
21 = 2nu = 2 - b, v = rcd-r~c-d + 2 V.C.8

Extensions to higher way classifications are made easily, but the study
of the marginal distributions becomes rather complex or involved.

Such studies are the analysis-of-informetion studies proposed by Kull-
back et al [40] and are anslagous to the analysis of variance with

an acronym ANOVA. A corresponding acronym could be ANOINF.

A sequence of observations can be tested against the hypothesis
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that it is a stationary Markov chain of specified order m. Successive
pairs 1j of observations of the occurrences of the states or class
intervals of a M.C. can be distributed in a two-way contingency table
such that the first state of the pair is the row category i or the
NOW condition, and the second state of the pair is the column category
J or the LATER condition. The tally of overlapping pairs of obser-
vations can be represented as in Table V.1l. If overlapping triplets

are considered where an fi.

3k is the frequency of observations of a

PREVIOUS state i, NOW state j, and LATER state k, then a cubical or
three dimensional matrix can be constructed. The process can be
extended out to any dimension 1, 2, 3, ..., and all dimensions will
have necessarily the same number of states or class intervals.

A stationary M.C. is determined completely by an initial
probability vector and a matrix of transition probabilities. If a
sequence of three observations i, j, and k is a representation of

a M.C. of order one, then

- (p.)(CLd) Sk

where Pijk is the probability of the whole sequence under the first
order assumption, P; is the initial probebility or the probability
of the first observation i, pij/pi is the transition from i to J,
and ij/pj is the transition from j to k. Since a longer initial

sequence would require more transitions, V.C.9 generalizes to

p

N 0 1 S
Lk yze.. - POGEHES) (). V.C.10

J Y
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If the theoretical probabilities are not known, empirical probabilities
should be used. The format of the matrix of empirical transition
probabilities is shown in Table V.3.

Under s second order assumption a third observation is dependent
upon the previoﬁs two observations. A transition probability can be
represented by pijk/pij' The initial probability used is that for the

first two observations; therefore,

Jkl Pyyz
P. . = (p )(—-J-—)( o (2B L. V.C.11
ijkl...xyz... 13 P, i3 Jk pxy

Extension of the transition theory to higher orders is easily made.

Substituting a pijk... for 1 enables V,C.2 to test whether
an observed frequency distribution is a realization of a stationary
M.C. of order specified by the pijk...' The null hypothesis is that
the observed distribution is of order m within the assumption that
it is of order m + 1. In other words a M.C. of order two, for
example, has probabilities

Dy = (P 13)(1’_31_) V.C.12

but the null hypothesis of order one implies that

P, p
_ﬂ = ;J.}E V.C.lB
Pig %
It follows, therefore, that
(2, ) (25) = (o) (2hd) (235 )
N = (=) (= V.C.1
Pk = (Pyy p ) = (p; 5, )(p‘j

A given stationary sequence of observations is tested for O, 1, 2,

N -
order. If the computed 2I or 2nu are ordinate values plotted against
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monotonic increasing orders on the abscissa, then the order m of the
process operating in the sequence is that value of the abscissa for
which the ordinate value of the curve first falls below the chosen

xz rejection level. Any order <m will not utilize all the information
that can be gleaned from the "history" of the data. On the other hand
the additional "history" incorporated into any order >m will not

lower the entropy or increase the information that is inherent in the
m-th order process.

When relative frequencies are used as estimates of the theoretical
initial and transition probabilities pijk’ the m.d.i.s. and the d.c.s.
diverge from equality. The difference results from the assumptions
made about the behavior of the empirical initial probabilities.
Baldwin [5] places the restriction of independence upon these proba-
bilities such that

Sy, B i

n n‘* n’? n n’t n’t n’? °°° 0T

Kullback et al [40] provide a more general test in that they do not
restrict the initial probabilities. The degrees of freedom with

which to enter the x2 tables depend upon the test statistic used.

N
For the m.d.i.s. or 21

v = sm(st -ts +t - 1) V.C.16
and for the more restrictive d.c.s. or 2nu

v = sm(st -ts +t) -m(s - 1) -1 V.C.17
where s is the number of states or class intervals into which each

observation can fall, m is the order of Markovity against which the

observed frequency matrix or sequence is being tested, and t is the

31



order m subtracted from the total length of the sequence i, j, Kk,
The minimum length of the total sequence must be m + 2.

3. Comparison between matrices

Baldwin [ 4] indicates some of seversl arrays which may be
used to determine whether the differences between matrices could *
be considered to be significant. Let P = (Pij) and Q = (qij) be
any two n x n matrices. The following quentities are measures of the

closeness to equality of P and Q.

a. The Euclidean Distance

[ . ‘]l/e
”P-QHE=_§§(pij'qij)'_; v.C.18
b. The Norm Distance
|p,q| = I;féjt) Iy - 5l V.C.19 .
c. The Mean Difference
— 1

An important quantity associated with the mean difference is
the

d. Variance of the Differences

o® (P,Q) =-rl-12 by z{ lpij -9 | - (F,Q) T v.C.21
i3

Still another metric set would be the comparison of entropy and
the variance of the respective matrices. This is only suggested here
and will be investigated later. An estimate of an entropy, however,

would be, after Masuyama [op. cit.], .
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fi=- >1:: (£,/n) 1n (£,/n) V.C.22
i=1
with
A5 k
Op =<{ z (£;/n) [1in (£;/n))2- B2 }-/n V.C.23
H i=1
As indicated previously, Masuyams [op. cit.] states that the
entropy likelihood estimate is similar to a formasl variance. It will
be necessary to check the behavior of the entropies for these are
bounded at zero by definition. The normalized entropies are bounded
by zero and one by definition. Perhaps a logarithmic transformation
of the entropies or an arc sine transformation of the normalized
entropies would be in order. From the above similarity the variance
ratio Z-test of Fisher [22], rensmed the F-test by Snedecor [52],
would suffice. The above suggestions are for future investigation
for they may have been reported on already and the authors are unaware
of such reports.
VI. COMPUTATIONS
The maximum winds taken at 12-hour intervals in the 10-15 km
layer over Cape Kennedy, Florida, during the eight-year period
1956-1963 are used to develop transition probability matrices.
These matrices are of various sizes and dimensions.
A. Two-state Matrices
Two-state manually compiled matrices of dimension r = 2, 3, 4, 5
are studied primarily in order to explore the nature of the information
statistics and to verify some of the properties of these statistics.
Only January data are used. In one set of arrays the data are

dichotomized into states of winds 70 mps and winds > 70 mps,
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and in another set the two classes consist of winds <h3 mps and
winds > 43 mps.

The two-dimensional matrices have little predictive wvalue
because the only possible forecasts are those of persistence and
of climatology. This can best be seen in Teble V1.1, which shows
the only four possible forecast schemes. In part a the process
operating is persistent in that the initial state will always be
forecast. A "negative" persistence is indicated in part b since
J=2fori=1land j=1 for i =2. Partsc and d show the two
climatological forecasts. In these cases the value of J is inde-
pendent of the initial state 1i.

An r-dimensional matrix\with the same s states in each dimension
represents a Markov chain of order m = r - 1. Kemeny and Snell [32]
show that an m-th order chain can be reduced to a first order chain
and represented by a two dimensional matrix with s™ states. The
expansion process can be illustrated as follows. Consider a two-state
(s = 2) M.C. of second order (m = 2) that is depicted by an array
with r = 3 = (i,J,k). The states corresponding to each dimension

are s, sj and s In the expanded chain m = 1 and r = 2 with the

K
first dimension containing the pair of states (Si’ sj) = Sij and

the second dimension containing the pair of states (Sj’ Sk) = S
Thus, the original two-state second order (i x j x k) matrix is
transformed into a four-state first order (ij x Jk) matrix. The
reduction of a M.C. to first order facilitates the retrieval of useful

information from the system at the expense of greatly increasing the

complexity of the computations.

34




TABLE V1.l Two-state, two dimensional transitional probability
matrices with rows representing the NOW states i = 1, 2 and the

columns representing the ILATER states j = 1, 2. For a given i the

forecast value of j is underlined. The forecast is that value of

J given i which has the highest probability occurrence.

LATER state J LATER state j
1 2 1
NOW 1 .70 .50 NOW 1 .30 .70
state state
i 2 30 .70 i 2 .70 .30
a) Persistence b) "Negative" Persistence

LATER state J LATER state J
2 1 2
NOW 1 .70 .30 NOW 1 .30 .70
state state
i 2 .10 30 i 2 .30 .70
c) Climatology d) Climatology
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B. Three-state Matrices

Manually tabulated r = 2, 3, L4, 5 dimensional matrices with
wind states 0 ¢ s, < 43 mps, 4% mps ¢ s, < 70 mps, 70 mps 55 are
tested for stationarity and order of Markovity m = 0, 1, 2, 3. Only
January data are examined.

The test statistic computed is the 2% of V.C.2. The P, takes
on the values of the empirical transitional and less restrictive
initial probabilities that are eppropriaste for the order being tested.
When the expected probabilities are greater than zero for all cells
of a matrix, the degrees of freedom are evaluated from V.C.16. If
some of these probabilities are zero, however, V.C.16 is invalid and
the degrees of freedom v are found by considering the degrees of
freedom associated with each independent component of the logarithmic
argument of V.C.2.

In order to check the results of m.d.i.s. order test of Kullback
et al [40] the normalized entropies R of the r-dimensional mstrices
are computed and plotted on a graph of R vs r. The value of r for
which R first becomes nearly constant as r increases should be equal
tom + 2, where m is the order of the operating system.

C. 6-, 11-, 22-state Matrices

The meximum winds are separated into 6, 11 and 22 classes or
states (0-20 mps, 21-40 mps, ..., 101-120 mps), (0-10 mps, 11-20 mps,
..., 101-110 mps) snd (0-5 mps, 6-10 mps, ..., 106-110 mps), respectively.
These data are processed by electronic computers to provide period-
month lag matrices of NOW ageinst LATER observed conditions in time
intervals of 12 hours out to a maximum of 120 hours or lag t = 10

time intervals. .The arrays contain frequencies of occurrence,
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relative frequencies and empirical transition probabilities for each
cell. The marginal or climatological vectors are also included.

For each matrix the following quantities are computed:

1. [n] [p] - [n] to test for stationarity

2. entropy H and normalized entropy R

3. 2nu for independence between NOW and LATER conditions

(not corrected for zero frequencies)

The last quantity is used in the method suggested by Baldwin [5]
for approximating the Markovity of a system. The 2nu for each of
the ten s-state lag matrices for a period-month is plotted as an
ordinate value against the lag or increasing time interval on the
abscissa. A horizontal line depicting the x2 rejection level is
drawn. A point above the line indicates dependence or correlation
between the NOW and lag t observations. Similarly, a point below the
line indicaﬁes independence between the NOW and lag t observations.

A smooth curve drawn through the points will cross the rejection line
once if there is no periodicity in the data. If this intersection
is at lag t, then all observations at & lag greater than t will not
be influenced by the NOW condition. The Markovity of a system there-
fore is estimated to be the value of the lag at which the 2nu curve
intersects the x® rejection curve. The method is only an approxi-
mation because the interactions or partial correlations between lags
are not considered. It is probable in a stationary process that the
information indicated by a significant value at a large lag will be
extracted and provided for by a lower order process. The 2nu versus
lag graphs for the Cape Kennedy, Florida, period-month maximum wind

data are held in file at ESSA-EDS-NWRC.
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Kemeny and Snell [op. cit.] show that under the assumption of
a first order stationary process [p] the two-step transition matrix
of the process is given by [p]2 , the three-step transition matrix
is given by [p]? ... In other words the partial correlations are

zero and

s[ply = (5lp1)" vI.C.1

vhere B[p]l is the lag one correlation matrix and t is the transition
step. For exsmple, if B[p]l is a 12-hour transition matrix, then
(6[p]l)8 is the 36-hour trensition matrix. Wadsworth et al [op. cit.]
discuss a phase of this procedure that is based on Koopman's work [3L4].

In order to test the validity of a first order assumption of 12-
and 24k-hour transition matrices, B[p]l and B[p]2 are raised to powers
and then are compared to the corresponding observed conditional proba-
bilities. No products of two different interval matrices are compared
to the corresponding observed conditional probabilities; that is,
the product of the i2-hour and the 2l-hour matrices are not compared
to the observed 36-hour transitional probability matrix. The quantities
(,[p] )t - (,Ip] )l and (,[p] )t - (,[p] )l are computed to test the

pr=-l BTt prr-2 B ¥iet
model. If the differences are not significantly different from zero,
then the first order assumption is valid.

The above computations are tabulated and held in file both at
ESSA-EDS-NWRC and at NASA-MSFC-R-AERO-YT. The results of a few of the
calculations have been extracted from the tabulations as examples and
are shown in Table VI.2.a-e.

D. m-th Order Six-state Matrices

The maximum winds over Cape Kennedy, Florida, are separated into
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six classes of equal intervals of 20 mps. A three dimensional, six-
state, second order matrix can be represented by a two dimensional,
36-state, first order matrix where each of the 36 states is a com-
bination of thg original six states. Under this second order assumption
the period-month wind data are processed by electronic computer to
provide 36-state, lag t = 1, 2, ..., 10 matrices of prior against post
observed conditions. The arrays contain frequencies of occurrence,
relative frequencies, and empirical transition probabilities for each
cell. The marginal or climatological vectors also are included.

For each matrix the following quantities are computed:

1. [x] [p] - [x]

2. H and R

3. 2nu for independence between prior and post conditions

(not corrected for zero frequencies).
The additional quantities (l[p]l)t - (l[p]t)l and (l[p]E)t - (1[Pjgt)l
are computed for the period-January matrices. All the calculations
and matrices are held in file at ESSA-EDS-NWRC.

Manually tabulated r = 2, 3, 4, 5 dimensional, six-state, period-
January matrices are tested for stationarity and specific order
m=0,1, 2, 5. The test statistic used is the 2T of V.C.2, where
the P, takes on the values appropriate for the order being tested.
Normalized entropies also are computed. These manual calculating
procedures are the same as those discussed previously in section VI.B.

VII. RESULTS
A, GStationarity
The metric chosen for comparison between the stationarity test

[x] [p] - [n] = P; ;5 and [0] = qij is the largest state or norm
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difference ?%%) Ipij - qij]' The arbitrarily selected criterion for
rejecting thzaassumption of stationarity is a norm difference > .030.
Of all the matrices tested the largest difference is .018, which is
well below the criterion selected. It is assumed, therefore, that all
the processes examined are stationary.

It is interesting to note, however, that the maximum norm dif-
ference occurs in October, while secondary maxims occur in the spring
months of April and May. The operating processes in the summer months
of July and August deviate the least from stationarity. These results
reflect the abrupt change from summer to winter in October and the
relatively gradual transition from winter to summer during the spring.
The small norm differences in the summer are indicative of a constant
weather regime.

B. Order

Baldwin's test statistic [5] for approximating the order of an
operating system is calculated for each of the electronic computer
tabulated matrices. The results of this test for first order matrices
are illustrated by the graphs of the uncorrected 2nu vs lag in Figures
7-9. The maximum orders m are determined from the point at which a
curve intersects the horizontal line depicting the xz rejection level.
A summary of the approximate order for a given month and matrix class
interval is shown in Table VII.1.

Clearly demonstrated from this table is the fact that as the
class intervals become smaller, the persistence or history within
the interval becomes less. This is not unexpected. Note that during
the summer months the approximate order of Markovity for the 5 mps

intervals is zero. This implies either that prediction within 5 mps
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Fig. 7. Graphs of 2 nu vs. lag for Cape Kennedy, Florida, 10-15 km
maximum wind matrices with class intervals of 0-20 mps,
21-40 mps, . . . , 101-120 mps for time intervals of 12 to
120 hours, 1/2 day to 5 days. Period of record 1956-1963.
The uncorrected 2nu values are X? distributed with 25 de-
grees of freedom. The value of X%at the 0.95 rejection
level, 34.4, is indicated by a horizontal line across each
inset graph. ' u ' is the dependence capacitance.
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Fig. 8. Graphs of 2nu vs. lag for Cape Kennedy, Florida, 10-15 km
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120 hours, 1/2 day to 5 days. Period of record 1956-1963.
The uncorrected 2nu values are X?® distributed with 100 de-
grees of freedom. The value of X at the 0.95 rejection
level, 118.5, is indicated by a horizontal line across each
inset graph. ' u' is the dependence capacitance.
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The uncorrected 2nu values are X’ distributed with 441
degrees of freedom. The value of X* at the 0.95 rejection
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inset graph. ' u ' is the dependence capacitance.
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TABLE VII.l Approximate order of Markovity in the Cape Kennedy,
Florida, 10-15 km maximum wind matrices in terms of 1/2 day (12-
hour) periods by 20-, 10- and 5-mps class intervals. Period of

record 1956-1963. These orders have been determined from Figures 7-9.

Class Intervals

(mps)
J P M A M J J A S O N D
20 10 10 10 10 8 3 8 8 10
10 10 10 10 10 6 2 5 6 8
5 2 4 2 3 1 1 2
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is too rigid a requirement for the present system of observing and
reporting, or that the transition processes have converged and that
there is no useful information in going back more than one time period
if one time period at all. In the latter case almost pure persistence
could be used as a prediction. If any changes occur, they will be
produced almost at random and a static prediction model would suffice.
This does not deny, however, that there may be other avenues to ex-
plore. Other layers and other stations could be used in & spatial
complex to provide more informstion.

The results of Beldwin's test [5] show that the operating pro-
cesses are of minimum order in the summer and of maximum order in
the winter. This means that there is more information to be gleaned
from the history of the weather in the winter months than in the
summer months. In other words the summer systems have nearly converged
to climatology and the Markov models may not be effective in fore-
casting the weather during this time of year. On the other hand
the Markov model prediction scheme may hold promise of some success
during the winter months.

Monthly graphs of the uncorrected 2nu vs lag for the second order
six-state matrices are shown in Figure 10. The x2 rejection level
based on (36 - 1)2 degrees of freedom is not depicted because the
number of degrees of freedom are invalid. The high frequencies of
zero cells in these matrices make it possible to delete about 20 rows
and columns from the winter arrays and about 30 rows and columns from
the summer arrays. The resulting matrices would have the same com-
puted 2nu as the original ones, but the number of degrees of freedom

would be greatly reduced.
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The tendency for some dependence capacitance curves to slope
upwards towards five days implies that there may be some periodic
function operating in the matrices and that the matrices are not
actually stationary. However, this tendency is only slight and no
further examination of the possible periodic feature is made here.
Crutcher and Charles [13], though, previously noted four and five
day periodicities in the wind at these levels in the Southeastern
United States. Investigations of this feature will be made later.

A comparison between first and second order six-~state matrices
is made readily by examining normalized entropies. Figure 11 depicts
the annual march of this quantity for the electronic computer tabu-
lated matrices. The higher the normalized entropy, the more chaos
or disorder that is inherent in the operating system, and the more
information that may be extracted or utilized. A look at the two
curves for six-state processes quickly reveals that in fall, winter
and spring the second order matrices extract more information from
the systems than do the first order matrices. In summer, however,
the curves coincide and reach a minimum value. This means that most
of the chaos is removed by the first order matrix, and that it will
be very difficult to extract any more information from the operating
systems.

The similar pattern of all four curves indicates that for the
class intervals studied the winter months exhibit a high entropy
and the summer months a low entropy. This implies that the history
influence present in the winter may possibly be exploited to provide
a workable Markov model, but that exploitation of the summer history

influence will not appreciably improve a Markov model.
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Because the sbove results indicate that a Markov scheme may
prove more fruitful for the winter months than for the summer months,
January data is studied in more detail than the data from other months.
The corrected 2? of Kullback et al [4O] for testing order is computed
for 2-, 3- and 6-state transition matrices. The null hypotheses tested
are that the matrices are of order m= 0, 1, 2, 3. The 0.95 con-
fidence level is chosen as the basis for non-rejection of the hypothe-
ses. The degrees of freedom with which to enter the x2 table are
adjusted to compensate for estimates of zero of theoretical proba-
bilities. The results of these tests are presented in Table VII.Z2.
It is seen that although the test of Baldwin revealed possible rela-
tively high orders, the data can be modeled by low order Markov chains.
In order to check these results the normalized entropies R of
each s-state, m-th order process are tabulated. An arbitrarily
selected change of > 10 percent between Rm and Rm + 1 is considered
to be significant. Under this criterion it is found that all four
January systems are second order. Use of higher order models does
not produce & significant gain of information.

Under the assumption of stationarity the 6 x 6, 11 x 11 and
22 x 22 matrices are tested for first order Markovity by comparing
(4[p]})" ema (4[p]),)® with (4lp],)" and (5lpl,,)", respectively.
-1 p-=-2 B 7t Brriet
The metric selected for comparison is the norm distance. Interpre-
tation of this quantity, however, is difficult. With only one
observation in a cell, obviously a difference of transition proba-
bilities could be 1.00. Since the norm value is dependent upon the
number of observations used to determine an empirical cell transition

probability, the problem arises as to what constitutes the minimum
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TABLE VII.2 Order of Markovity as determined by the test of Kullback
et al [40] in the Cape Kennedy, Florida, 10-15 km maximum Jamary

wind matrices in terms of 1/2 day (12-hour) periods. Period of record:

1956-1963.

Number of Class Intervals Order

States s
2 Ogsl<l+5 mps < S, 2
2 Ogsl< 70 mps < S, 3
3 Ogsl<l+5mps_§se<'IOmpsgs3 1
6 0 8<20mps, ..., 100 mps < s¢ < 120 mps 2
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number of cell observations that would make the norm value meaningful.
Further research towards the application of binomial or multinomial
probabilities to this problem is suggested.

A subjective evaluation of the norm differences is possible.

For the three s-state systems the highest values occur in the winter
and the lowest values in the summer. This infers that a first order
model would fit the summer data better than the winter data.

C. Verification of the Prediction Schemes

The electronic computer tabulated transitional and conditional
probability mstrices are used as prediction schemes to make forecasts
out to three days or six time intervals during the winter season of
December, January and February and during the summer season of June,
July and August. Thirty days during each season are randomly selected
from the three-year period 1964-1966. The 10-15 km meximum wind
observations on these days determine the initial conditions from
which predictions are made. In some instances less than 180 forecasts
are made for a season. This occurs either because the conditions
during the test period exceed the limits of the predictive scheme
or because the predictive scheme will allow equiprobable outcome
events.

For each of the s-state systems, forecasts are made using first
order conditional probsbility matrices (B[p] t)l and Markov trans-
itional probability matrices (B[p]l)t' Two predictions of persistence
and one of climatology also are made. The first persistence forecast
verifies if the later observation falls in the same class as the
initial observation, where the class interval is determined by the

s-states. The second persistence forecast verifies if the later
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observation falls in the same class interval as the initial obser-
vation, where the class interval is such that the initisl observation
is in the middle of the interval. The state with the highest
frequency of observations from 1956-1963 serves as the climatological
forecast. In addition to the above schemes second order conditional
probability matrices are used to forecast six-state conditions.

The results of these forecasts are depicted in Table VII.3.

It is readily apparent that the prediction accuracy decreases as the
class interval is made smaller. This is not unexpected since an
increase in the number of classes is concomitant with a departure
from the perfect but meaningless forecast implied by & one-state
system. It is noted, though, that the relative frequencies are very
low in the 5 mps class interval systems. The inference is that the
requirement for predicting in a high-precision, 22-state system is
too rigid for the present practices of observing upper level winds.

The accuracy of all the forecast schemes is greater in the
summer than in the winter because the warm weather winds are much
less variable than the winter winds. This low variability also
explains the high verification scores of persistence. It will be
difficult for any prediction scheme to be better than persistence
during the summer season.

A Markov first order predictibn scheme works best in the ll-state
system. It provides the greatest accuracy of any winter forecast and
also does well in the summer for a process with 10 mps class intervals.
In a system with more states the precision requirements are too

stringent to obtain good forecasts, and in a system with fewer states
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most of the variability of the observations is within a class and
cannot be detected by the Markov scheme.

Manually tabulated first, second, and third order one-step
transition matrices for January are used to make 12-hour forecasts
on 40 randomly selected days from the four Januaries in 1964-1967. The
forecasts are compared with those of climatology and persistence. The
four systems shown in Table VII.2 are evaluated.

The results of the 12-hour forecasts are given in Table VII.4. 1In
all four systems the climatological forecast is the worst. The Markov
scheme predictions coincide with those of persistence in all but the
6-state system. Although forecasts of transitions other than per-
sistence are allowed in the 2- and 3-state systems, instances where
they can be made are limited to the lowest frequency classes. 1In
the 6-state system the third order matrix provides the best forecasts
of the three Markov schemes.

Markov models will produce results equal to or better than per-
sistence. In the one case where persistence shows a higher score
the comparable Markov model is not shown. It would be necessary to
construct a new model based on the same interval used for each per-
sistence prediction. This unequal comparison should also be kept
in mind while assessing the results previously shown in Table VII.3.

VIII. CONCLUSIONS

The results of the previous section can be construed to indicate

that a forecast of the 10-15 km maximum winds over Cape Kennedy, Florids,

based on persistence is not significantly different from a forecast basead
on a more sophisticated Markov scheme. This inference, however, is

limited in light of several considerations of the study.
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Some considerations of the limitations of the data are in order.
The forecast schemes are based on data from an eight-year period, or
essentially from a relatively small sample of eight. Since the wind
distribution is continuous, it is expected that over a long period
of time all cells of a contingency table should be filled, even though
the matrix represents a discrete distribution. The discreteness is
only artificially induced by arbitrarily setting class intervals into
which the observations are forced to fall. Because of the small
sample of eight that is used in this study, most of the matrices con-
tain cells of zero frequencies.

The problems encountered as a result of the zero cell frequencies
are numerous. The empirical relative frequency matrices are used
as estimates of the true theoretical transition probability matrices.
Most of the matrix testing procedures, however, are valid only for
theoretical probabilities greater than zero. The correction for zero
frequencies in an observed distribution that is being tested for fit
by a theoretical distribution is empirical and therefore subject to
error. The evaluation of the degrees of freedom of a system becomes
extremely tedious when there are zero cells in a matrix because each
component of the system must be treated separately. Finally, forecast
schemes that allow a zero probability of occurrence for some classes
are not at all satisfying.

One obvious method of alleviating some of the above problems
is to use a larger sample. Twelve years of serially complete wind
data will soon be available at ESSA-EDS-NWRC. It is questionable,
though, whether the 50 percent- increase in data over the present study

will be enough to stabilize the systems and to eliminate the cell
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frequencies of zero. Another method is to embed the observed fre-
quency distributions in matrices of ones before determining relative
frequencies. Although this technique is less satisfying theoretically
than intuitively, the embedding process approximstes a continuous
distribution end the problem of zero cell frequencies would be
eliminated. This feature will be studied.

Periodicities within the data may be hindering the effectiveness
of the Markov prediction schemes. It is suggested that spectra or
harmonic analyses be made on the data to determine if significant
cyclical influences are present. If so, these cycles should be re-
moved from the data series, and the residual series should be studied.
The forecast scheme then will consist of a component from the signifi-
cant cycles and a component from the residual series. This feature
will be studied.

Another problem concerns the reliability of the empirical transition
probability matrices. Confidence bounds need to be established on
all of the probabilities. Perhaps binomial or multinomial probability
theory can be applied further in the solution of this problem. Future
investigation also should be made to determine the critical levels for
accepting or not accepting the hypotheses tested by the metric tests.

The capacity of the present and planned electronic computers at
ESSA-EDS-NWRC severely restricts the study of processes of order greater
then one or two for more than a few states. The size of matrices and
the number of combinations of possible events increase very rapidly
as the number of states and/or orders increases. This expansion
quickly causes the limits of the computer to be exceeded and makes

the task of manually processing the data monumental. It is recommended,

70




however, that higher order processes should be studied for at least
the 6- and ll-state systems.

In view of the aforementioned problems this study can be con-
sidered as a first step towards the prediction by the use of Markov
techniques of the maximum winds in the 10-15 km layer over Cape
Kennedy, Florida. The results herein are in part encouraging and
in part discouraging. At least the technique does as well as per-
sistence and holds promise for better prediction. Only after much
more investigation will the merits of the Markov technique as applied
to the maximum winds be able to be assessed fully.
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(1) On the title page the Government Order should be H-76789.
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